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An adaptive mesh technique is derived as a constrained minimization of the functional used 
in the moving finite element (MFE) method. The result is a matrix equation for mesh 
velocities alone (i.e., a pure adaptive mesh prescription). The method retains many attractive 
features of MFE, including the ability to independently control mesh motion through penalty 
terms. #Es 1984 Academic Press, Inc. 

A. INTRODUCTION 

Adaptive mesh techniques for the solution of partial differential equations have 
long been of interest, particularly for those problems involving the propagation of 
sharp fronts through the mesh, such as shocks [l] or flame fronts [2], for example. In 
general, an adaptive mesh technique may be defined as one which changes the mesh 
in the course of the calculation in order to improve the accuracy of the solution. 
Typically, this has meant that the mesh is concentrated in regions of rapidly changing 
gradients, and various algorithms have been proposed for this purpose (Refs. [l-4], 
for example). 

Among this collection of methods the moving finite element (MFE) method [5-71 
stands out because it is directly based on the minimization of a measure of the error 
of the solution, namely, the L, norm of the residual. The method has demonstrated 
some spectacular results in resolving one-dimensional fronts [7], and there is good 
reason to believe that it will also be successful in 2-D [8 1. The MFE method, in 
effect, combines the Galerkin finite element method with an adaptive mesh scheme in 
a self-consistent manner. The good accuracy obtained in the demonstration problems 
[7] must be attributed to the presence of the adaptive mesh rather than to the use of 
Galerkin finite elements. Unfortunately, the adaptive method (i.e., the specification of 
mesh velocities) is intimately interconnected with the discrete approximation for the 
partial differential equations to be solved. As a result of this coupling the nature of 
the underlying adaptive scheme is obscured. In addition, this coupling leads to a 

* The U. S. Government’s right to retain a nonexclusive royalty-free license in and to the copyright 
covering this paper, for governmental purposes, is acknowledged. 

0021-9991184 $3.00 
Copyright Q 1984 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

324 



SIMPLIFIED ADAPTIVE MESH TECHNIQrJE 325 

much larger matrix system of equations to be solved, as compared to the system 
associated with the Galerkin equations alone. 

It will be the primary purpose of this paper to show that it is possible to extract 
this underlying adaptive mesh technique from the MFE method. Given any specified 
discrete approximation for the partial differential equations, the result will be a 
matrix system of equations for the mesh velocities alone (i.e., a pure adaptive mesh 
scheme). This system of equations arises, as in the MFE method, from a variational 
principle involving the constrained minimization of a functional given by the L2 norm 
of a residual. This means that the resulting matrix is sparse, symmetric, and positive 
definite. Additional control over the motion of mesh points can be exercised, as in the 
MFE method, by the addition of “penalty” or “regularization” terms to the 
functional. 

Just as in the case of the MFE method, the new technique is derived in genera! 
terms, but it is applied and discussed in a rather simple context, namely the I-D 
Burgers equation, for clarity of exposition. The method shares many characteristics In 
common with MFE and these are generally not discussed in order to avoid 
unnecessary repetition. These have to do principally with applications to systems of 
equations and with the issues involved in the choice of penaity functions. I: is 
expected that any such procedures applied to the MFE method will apply equahy 
well to this simplified method. 

B. GENERAL DESCRIPTION 

1. The Moning Finite Element Method (MFE) 

We begin with a short recapitulation of the essentials at the MFE method as it 
applies in 1-D [?I. Consider the scalar partial differential equation 

r c, 
;+uz+qq+o, 

where q is an arbitrary scalar dependent variable, u is a velocity, and L is some 
possibly nonlinear spatial differential operator. This equation is a typical transport 
equation of interest in many applications. We wish to solve this equation for t > 0 on 
the interval x E [u, 61 given initial and boundary condition. Assume a regular 
subdivision of this interval (mesh) defined by [u =x, < ?c2 ..- xi < -xi+ i .‘I < ,r:: = bj. 
We now assume that the mesh can move with an arbitrary vetocity S (Si s dxxi/dt). 
Recalling that the time derivative following the motion of the mesh is 

the transport equation can be written as 

r 

4 + (u - S) 2 + L(q) = 0. 



326 JOHN K. DUKOWICZ 

Let us consider the subinterval -vk : x E [xi, xi+ 1], 1 < k < N - 1. In each subin- 
terval we assume a linear variation’ for our variables 

it 1 i+l 

qk(x) = c 4jq+). 4k(x> = C 4j#;(x)v 

j=i j=i 

i+1 it1 

u”(x) = c Uj&(X), Sk(X) = C sj#T(x), 

j=i j=i 

where qj = q(x,), etc., and #t, @+ 1 are the linear shape functions (to be distinguished 
from the related ai, pi basis functions of Ref. [7]) on the interval k defined by 

and zero otherwise. Note that &x,) = 1, &xi+ 1) = 0, and 41, l(~ui) = 0, 
&+ ,(xit 1) = 1. Since we have assumed a linear variation for the variables, the 
transport equation, Eq. (2), will not be exactly satisfied and there will be a nonzero 
residual on the interval given by 

i+l 

Rk = C 4j + (Uj - Sj) g @J(X) + L(qk), 

j=i [ s- 1 
(4) 

where aqk/3x = (qi+, - qi)/(-Ui+, - -xi). To determine the unknowns di, Si, 1 < i < N, 
we minimize a functional 1, equal to the square of the norm of the residual, 

and obtain the equations to be solved by differentiating with respect to the free 
parameters di, Si, 

aI 
- 0, 

z- 
%jE {4i,S,}, l<i,<N, l<j<2N, 

and since the square of the norm is quadratic in the variables, this defines a system of 
2N linear equations which is expressed by the matrix equation 

A%=b, (5) 

where we have defined a vector, AT = (iT, ST), composed of the 2N unknown 
parameters xj. This equation can be viewed as a linear system of ODES to be solved 

’ The MFE method [7] is more general, allowing arbitrary basis functions, but the linear case is the 
most practical. 



SIMPLIFIED ADAPTIVE MESH TECHNIQUE 327 

for the associated vector XT = (qr, x’) as a function of time. Standard methods, in 
particular stiff ODE solvers, are applicable. 

Notice that in the special case of a simple transport equation (L(q) = O), the 
residual (Eq. (4)) is made identically zero by Qi = 0, Si = ui, I < i < N, and so this 
provides a simple exact solution of Eq. (5). 

Under certain circumstances the matrix A of Eq. (5) can become singular. This 
occurs whenever 8q k-‘/i?x=aqk/&c (i.e., whenever qipl,qi;qi+l lie along a single 
straight line [5]). The explanation for this is that the unknowns di, Si occur in the 
linear combinations Qi + (ui - SJ 8x9 and there are exactly 2N of these provided 
i3qk-*/dx f 8qk/&. However, if these slopes are equal there are only 2N - 2 linearly 
independent combinations and the matrix A becomes rank deficient, i.e., there are 
fewer independent equations than unknowns. The practical effect is that the mesh 
velocity Si becomes extremely large as this condition of colinearity is approached. 
This can be intuitively understood since a mesh point located in the interior of a 
linear segment of the solution is not needed to resolve that segment, and it thus tends 
to move rapidly towards one or the other end of the segment. Thus we would 
normally not expect this behavior to occur in the course of a solution, but it may 
easily arise as a result of improper initial mesh placement. To overcome such 
potential problems, and to provide independent control over mesh velocities, Miiier 
IS, 61 introduced regularization or penalty terms which are added to the square of the 
norm of the residual to obtain a new functional 

(6: 

which is again to be minimized with respect to diY Sj. Notice that the penalty 
functions Pk(Si) are functions of the mesh velocities only, so that they affect only the 
mesh velocity equations. The functional I remains positive definite, and hence leads 
t’o a symmetric, positive definite system of equations. 

2. The SirnpliJied Moving Finite Element Method (SMFEj 

Examining Eq. (5) we see that A is a 2N X 2N matrix which may be partitioned as 

where 4 1 t A ?. and B are N x N submatrices, corresponding to the partitioning of the 
vector X 

This is a natural partitioning into the two physically different quantities 4 and S. The 
matrices A L and A, can be considered to be associated with the constrained 
minimization problems 
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(9) 

respectively. The matrix B is a coupling matrix. This coupling is inherent in the MFE 
method, and it may be viewed as a drawback in the sense that it leads to very large 
matrix equations. This may not seem significant for the scalar equation considered 
here, but it can become a severe problem for systems of equations, where all the 
variables become coupled. 

We can reduce the size of this system of equations by enforcing certain constraints, 
as in Eqs. (9). For example, if we enforce the constraint S = 0, i.e., a fixed mesh. then 
the method reduces to just the usual Galerkin finite element method expressed as 

A,il=b,, 

which is obtained from the first of Eq. (9). On the other hand, if we enforce the 
constraint 4 = 0 then the method becomes a finite element version of Harlow’s 
dynamics of contours method [9]. This last scheme, expressed as 

and obtained from the last of Eq. (9), is a viable adaptive mesh scheme except under 
conditions when the solution tends to generate new contour values. Notice that these 
constraints are applied to the functional 1, rather than to the matrix equation (Eq. 5). 

These ideas can be generalized. Suppose we already have a convenient discrete 
approximation to Eq. (2) in the form 

4i = Q,(S, 9, x), W? 

defined on the mesh xT = {xi}. This may be a finite-difference approximation, for 
example, or any one of other reasonable approximations such as appear in numerous 
existing codes. Equations (12) can of course be integrated to find q, provided S is 
known. In order to find an equation for S, Eq. (12) may be viewed as a prescribed 
relationship between 4 and S which acts as a constraint to the minimization of the 
functional I. Using Eqs. (12) to eliminate CI in Eq. (4), we obtain 

i+l 

Rk = C 
j=i 

Qj(s, 9, X) + (uj - sj) !$I @j”(X) + L(qk)> (13) 

which is a function of Sj only. Substituting this into the expression for the functional 
as defined in Eq. (6), we perform the minimization 
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which implies a matrix equation 

A,S = b,. (14) 

where .A, is an N x N matrix. The procedure to obtain Eq. (14) is illustrated by a 
concrete example in Appendix A. 

The above procedure defines the simplified moving finite element method (SMFE). 
The method will result in the set of equations 

A,S=b,. (15a) 

i=s. (1Sc) 

In this form, the method resembles a conventional adaptive mesh scheme; it contains 
an adaptive mesh-motion algorithm (Eqs. (Isa), (c)) together with discrete evolution 
equations for the dependent variable q on this moving mesh (Eq. (15b)). We have 
thus, in a sense, extracted the adaptive mesh scheme contained in the MFE method. It 
is easy to show that the new matrix A, remains sparse, symmetric, and positive 
definite, We have also retained, as a convenience, the ability to independently control 
the mesh motion through penalty functions (regularization terms) added to the 
functional I, even though the new matrix is not necessarily subject to the same 
singularities as the previous one. The important point to note is that the size of the 
!knear matrix problem has been greatly reduced, especially for problems invoivmg 
systems of equations. This is very significant when Eqs. (15b), (c) are solved using 
explicit methods, but less significant when stiff equation solvers are used. 

It is not clear what we have sacrificed in comparison with MFE, There is great 
freedom in the choice of the discrete approximation, Eq. (12). It may be expected that 
the mesh motion will be sensitive to the choice of discretization, but since the method 
reduces the global error of the solution it should tend to compensate for the 
discretization error of the chosen scheme. We might expect that not all discretizations 
will be successful, especially in cases of large and abrupt changes in mesh size, since 
in such a case the discretization error will be especially large, and it may not be 
possible for the mesh motion alone to overcome this large error. These considerations 
will be illustrated when numerical examples are presented in the following section. 

C. THE TEST PROBLEM 

To illustrate the properties of this new adaptive mesh scheme we consider the one- 
dimensional Burgers equation, which is a simple example of Eq. (1). This equation 
has been previously used to illustrate the MFE method 15-71 since it is one of the 
simplest equations which exhibit traveling front solutions. Such a traveling front 
solution of the Burgers equation, 
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where R is a Reynolds number, with boundary conditions u(co, t) = 0, u(---GO, t) = 1, 
is given by 

u(x, t) = [ 1 + e (l/Z)R(x-(l/Z)t) -1 
I * (1-Q 

This solution represents a front of nominal thickness 8/R propagating with a positive 
velocity equal to +. 

This solution forms an ideal test problem for illustrating the properties of the new 
simplified scheme and for comparing it with the MFE method. First, the solution is 
monotonic and sufficiently well behaved so that regularization terms were not 
required. Secondly, as will be shown later, a one-dimensional, single variable 
equation, such as the Burgers equation, is sufficiently simple in the MFE formulation 
without regularization terms that the matrix equation (Eq. (5)) can be explicitly 
solved and put in the form of Eqs. (15). Thus in this case the MFE method may be 
considered as merely a particular case of SMFE. This clearly simplifies the 
comparison of the methods. 

The numerical solutions for this problem were obtained using a mesh of 20 nodes, 
xi E [0, lo]. The two end nodes were fixed while the internal nodes were allowed to 
move. The boundary conditions at the end points of this region are intended to 
correspond to the exact solution. Thus, for all cases the boundary conditions applied 
were: S, = 0, U, = 1, x, = 0; S,, = uZO = 0, x2,, = 10; as well as the implied 
conditions zi L = ti,, = 0. The Reynolds number R was taken to be 103, corresponding 
to a reasonably steep front of nominal thickness 0.008. The initial mesh was 
distributed uniformly between x2 = 0.1 and xl9 = 0.2. The initial profile was specified 
to be 

Uj=j{l tcos[107r(xi-X2)]}, 2<i,< 19. 

The time integration was performed using a stiff equation solver called SDRIVl 
[lo]. The general behavior of the numerical solutions is illustrated in Fig. 1. The 
front starts from the left boundary, very quickly reaches a “steady state,” and then 
propagates with an internal mesh velocity Sj = 0.5 toward the right-hand boundary. 

T-4. T-3. T-,2. T-16. 

FIG. 1. A typical SMFE solution of the test problem showing the propagation of a Burgers shock 
front (R = 103) toward the right-hand boundary. 
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The numerical solutions were obtained for several cases of SMFE, as well as for 
the MFE method. The MFE method is the reference for comparison with the other 
cases. All the cases will be characterized by an approximation to the Burgers 
equation in the form (cf. Eqs. (2 j, (12)) 

where [au/ax], and [L+‘u/~x’]~ are some suitable approximations to %u/& and 
Z+‘U/~X’ evaluated at point i. A particular choice of these two quantities then 
determines the matrix equation for the mesh velocities Si. As mentioned previously, 
for the case of the one-dimensional Burgers equation, the MFE method without 
regularization terms can be explicitly solved and expressed as a special case of t.he 
SMFE method. This is demonstrated in Appendix EL Thus, the MFE method 
corresponds to choosing 

and 

where 

a2u 
1-1 = L. [ri + Vi], 

axzi 2 
(20) 

(21’ 

(22) 

for 2 < i < N - 1, 2 < k < N - 2, where N is the total number of mesh points. The 
corresponding matrix equation for the mesh velocities can be solved to give 

This decomposition of the MFE method will not be possible in general; however, in 
this case it provides valuable insight into the method and permits direct comparison 
with other cases of the SMFE method. 

The examples of the SMFE method which we will consider will be specified by the 
following representative choices for [&/ax] i and [8u/iix’], : 

1. 

_ ‘i+l -Ui-[ 

Xi+l -xi-l ’ 
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i.e., a centered difference approximation, 

2. 
au [ 1 1 xi- i= xi+, -xi.-l [ (xrxdg+ (xi+l _,)-fg] ) 

2 

i= (x~+~-x~-~) 
--- 1 ’ 

both obtained by fitting a quadratic function to ui- i, ui, and ui+ i, and 

ad auk-l 
z--z- * I 

(25) 

(26) 

(27) 

This last is an approximation obtained by applying a formula of the type given by 
Eq. (19) to three values of the derivative: auk/ax and auk-‘/ax, assumed to hold at 
the midpoints of the intervals k and k - 1, respectively, and by ;(au”/ax + auk- ‘/ax), 
assumed to hold at the point xi. 

The results of the calculations for the test problem are illustrated in Figs. 2-8 for 
the cases summarized in Table I. The figures show the solution at time t = 10 when 

BURGERS SHOCK FRONT 

FIG. 2. The Burgers shock profile (at t = 10) obtained using the MFE method. 
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FIG. 3. The Burgers shock profile (at t= 10) obtained using the SMFE method and the difference 
approximations of Eq. (24) and Eq. (26). 

‘.O 
BURGERS SHOCK FRONT 1 -----e\ 

LPI 

'"a, 

FIG. 4. The Burgers shock profile (at I = IO) obtained using the SMFE method and the dnkrence 
approximations of Eq. (24) and Eq. (27), except for the two nodes at the edges of the profiie where 
Eq. (25) was used. 
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BURGERS SHOCK FRONT 

-0.02 1 
FIG. 5. The Burgers shock profile (at t = 10) obtained using the SMFE method and the dil‘ference 

approximations of Eq. (19) and Eq. (26), except for the two nodes at the edges of the profile whcrc 
Eq. (27) was used. 

0 00 cl0 
-0.02 ! 

FIG. 6. The Burgers shock profile (at I= 10) obtained using the SMFE method and the difference 
approximations of Eq. (19) and Eq. (27). 
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‘3’ 

I 0.0 ~ -10.0 

BURGERS SHOCK FRONT 

0.050 i 

FIG. 7. The Burgers shock profile (at t = 10) obtained using the SMFE method and the difference 
approximations of Eq. (25) and Eq. (26), except for the two nodes at the edges of the profile where 
Eq. (27) was used. 

the front has reached approximately midway between the mesh boundaries. Also 
plotted for comparison is the exact solution (Eq. (17)) which has been made to 
coincide with the computed profile at the point where II = 4. The difference between 
the computed values and the exact solution is the error, and this is plotted separately 
underneath the plot of the profile. The maximum error for each case is shown in 
Table 1. 

A solution could not be obtained for several of the cases. These cases are indicated 
by asterisks in the table. The difficulty appears to be due to a failure of the approx- 
imation (Eq. (18)) at the nodes located at the edges of the profile (i = 2, 19) where 
there is an abrupt change in mesh spacing. By merely switching the approximation 
[32~/~.~z]i (between Eq. (26) and Eq. (27)) at these points alone it was possible to 
obtain stable solutions, and these are shown in the corresponding figures. 
Surprisingly, the SMFE method appears to give better accuracy than MFE for our 
test problem in all cases except possibly for the case of Fig. 7. For this specific case 
the off-diagonal coefftcients of the matrix A, of Eq. (14) are proportional to 
(&1”/ax - &P’/ax)(&lk+’ /3x - &c~/&). Each of these factors is proportional to 
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BURGERS SHOCK FRONT 

:‘1 > 

3 0.5 

‘1, 

0.0 L I \ -10.0 , 
-5.0 0.0 5.0 10.0 

1000. xx 

ERROR 
0.02 

1 

-0.02 I 
FIG. 8. The Burgers shock profile (at t = 10) obtained using the SMFE method and the difference 

approximations of Eq. (25) and Eq. (27). 

[8u/L?x’li, and since the second derivative goes through zero within the front profile 
there is a tendency for mesh points on either side of this point to become decoupled 
and drift apart. This is apparent in Fig. 7. In general, the large mesh ratio at the end 
points (i = 2, 19) undoubtedly determines the character and accuracy of the 
solutions. It is important to note that all the solutions were obtained without the use 

TABLE I 

Summary of Calculations 

Figure No. [&/2x], Maximum Error Method 

2 Eq. (19) 
3 Eq. (24) 
4* EP. (24) 
5 1: Eq. (19) 
6 Eq. (19) 
7* Eq. (25) 
8 Eq. (25) 

Eq. (20) 
Eq. (26) 
Eq. (27) 
Eq. (26) 
Eq. (27) 

Eq. (26) 
Eq. (27) 

0.05 MFE 
0.015 SMFE 
0.02 SMFE 
0.012 SMFE 
0.015 SMFE 
0.04 SMFE 
0.015 SMFE 
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of regularization terms (in contrast to the calculations in Ref. ]7]). Regularization 
terms were originally introduced at least partly to alleviate similar difficulties, and 
their judicious use in this problem would undoubtedly improve the accuracy of the 
solutions. However, it was felt that since the appropriate specification of 
regularization terms is very subjective and problem dependent, their use would 
unnecessarily complicate the exposition, as well as the comparison of the MFE and 
SMFE methods. The significant point is not that SMFE happened to be more 
accurate than MFE in some of the cases considered, since this will probably not be 
true for other cases, or other problems, but that SMFE is at least comparable to MFE 
in its ability to resolve and follow steep fronts when used in a comparable manner. 

D. SUMMARY 

A rather general technique for simplifying the moving finite element method to 
obtain an adaptive mesh technique has been described. This method appears to be 
applicable whenever the MFE method is applicable. The method is derived as a 
constrained minimization of the MFE residual functional and thus it retains several 
advantages of the MFE method, such as a symmetric, positive definite matrix, the 
ability to independently control mesh motion through penalty terms, and a direct 
relationship to a global measure of solution error. 

Many aspects of the method, such as applications to systems of equations or to 
two-dimensional equations, have not been considered. These questions, however, are 
entirely similar to the corresponding aspects of the MFE method where, in some 
cases, they have not yet been adequately dealt with. 

APPENDIX A: DERIVATION OF THE SMFE EQUATIONS 
FOR THE CASE OF THE ONE-DIMENSIONAL BURGERS EQUATION 

As an example of the application of the SMFE method, we will derive the 
equations for the case of the one-dimensional Burgers equation (Eq. (16)) in some 
detail. We start with the definition of the functional (in the absence of regularization 
terms) as 

I= 

where 

(Al) 
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and k denotes the subinterval xk :x E [xi, xi+, 1, 1 < i < N, 1 < k < N - 1, and #j”(-~) 
are the shape functions defined in Eq. (3). We have assumed a linear variation for all 
variables; this leaves the functional dependence of &/&* undefined for the moment. 

The SMFE method is specified by a choice of the discrete approximation in the 
form 

643) 

where [&+li, [&@x’]~ are suitable approximations. Substituting this into the 
equation for the residual, we obtain 

Rk= tsiAui) ([ glipt$J #f(X) 

+ tsi+ 1 - ui+ 11 ( [$Ji,,$) !+c+sx> 

+f 1 [g+lw+ [~]i+lm:+,w~~. 644) 

This incorporates the constraint into the functional. Thus, the functional I depends 
only on the set of unknowns {S,}. A typical equation to determine the unknowns is 
obtained when we minimize the functional with respect to Si. From Eq. (A4) we see 
that only two terms in the functional depend on Si, namely, those involving R k- ’ and 
Rk. Thus, the equation associated with point i is 

-=- (Rk-1)2 d~+j~+~(R~)~ dx] 
xi 

=2 aRk-’ f3Rk 
,S-dx+jXi+‘RkFdr 

I xi I 1 
= 0, W) 

where, by differentiating Eq. (A4), we have 

2!gL ( [?!!]i+p) #f-‘(x), 

g= ( [gyi-g) @q(x). 
646) 

Equation (A5) corresponds to the assembly process in a typical finite-element 
procedure. Examining these equations, we see that we will need the integrals 

1’1’” [~:(x)]~ dx = l‘li+’ [&+ l(x)] 2 dx = (xi+ 1 - xi)/3, 
xi _ xi 

(A7) 
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and 

as weil as 

These last two integrals will be evaluated, as in the MFE method, by the process of 
“mollification” [7]. That is, since we assume a linear variation of u over each 
interval there will be a discontinuity in &/2x at each mesh point. These discon- 
tinuities are smoothed over a short distance 6, the integrals are evaluated, and the 
result is obtained by taking the limit 6 + 0. The result is 

and 

1 ,&P+r 2Uk 
i:r+‘m~+,(~~~~d.~=ij,-;l) 0 (AiO) 

I 

Finally, by using these results and taking out common factors: Eq. (A5) may be 
expressed as 

Ai(Si~,-Ui-I)+Bj(S~-UUi)+Ci(Si+!-z~i+I)=Dj, (Al!) 

where 
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These equations hold everywhere except at the two points next to the ends of the 
interval (i = 2, N - 1). These two equations are modified because the residuals in the 
two subintervals, R’ and R”-‘, are affected by the boundary conditions S, = 0, 
U, = 1, and S, = 0, uN = 0. These end equations are easily obtained by using the 
above boundary conditions in Eq. (Al I), together with [&/&] i = [a’~/ax’]~ = 0, 
obtained from the implied conditions tij = 0, i = 1, IV. Thus, Eq. (Al 1) represents a 
tridiagonal system of equations which is easily solved for the mesh velocities {S,). 

APPENDIX B: EXPLICIT SOLUTION OF THE MFE EQUATIONS 
FOR THE ONE-DIMENSIONAL BURGERS EQUATION 

The one-dimensional Burgers equation belongs to a class of equations for which 
the MFE equations, without regularization terms, may be explicitly solved. 

The MFE method is associated with the functional 

I = c J’+’ (Rk)’ dx, 
k J xi 

where, for the Burgers equation, 

642) 

and fi, Si, 1 < i < N, are the variables. We now introduce new variables {&, lli} by 
means of 

which can be inverted to give 

1 ii = - 
R 

sj = ui + -L (Vi - ri> 
R /auk &k-l. . 

\ 

(B3? 

(B4) 
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Clearly, there is a one-to-one correspondence between the variables {zij, Sj) and 
{&, qi}, provided &“/ax- # &k-‘j& If &lk/& = ~Yu~-‘/ax then the method becomes 
singular, as discussed previously, and MFE breaks down. Hence, in the absence of 
this singularity we can perform the minimization with respect to the new variables 
{&, 17~) just as well as with respect to the old variables {tii, S,]. Thus, the minimum is 
found by solving 

where 

Rk=f ~l(x)ei+Pr+,(x)rlit,-~ e 

[ 1 

Evaluating the integrals with the help of Eqs. (A7)-(AlO)> we obtain 

25f + yli+l = 
3 auk auk-L, 

--- 

(eyi+ 1 - Xi) BX 1 ax ’ 

3 
tf+2qi+l= (xi+,-xi) ’ 

which can be solved to give 

5i = cxiIll- Xi) 

(xi+,‘- xi) 2 
auk+1 auk-l 

rli+1= 
-- 

ax + a.~ 

or, equivalently 

~- 3 auk-l 

7 . I 

These values of &, yli may be used directly in Eqs. (B3) and (B4), but it 
interesting to express Eq. (B3) in an alternative form obtained by taking the 
of Eqs. (Bl) and (B2), 

i auk auk-2 
ui=y x+ 

[ 
ax 1 Csi - uf) + & (Ti + Vi>, 

(B9) 

(Bhl) 

is more 
average 

(B13) 

which is suggestive of an approximation to the Burgers equation. 
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The above expressions for &, vi apply in the interior of the mesh. Applying the 
boundary conditions appropriate to the test problem (S, = S, = 0, U, = 1, uN = 0, 
ti, = zi, = 0) to the residuals in the end-intervals results in 

&=R$ v, =o, 

3 1 
(B14) 

r2 = -T (x2 - x1) 

and 

Thus, although Eqs. (BlO) and (B12) involve five point operators in the interior, no 
outside points are ever required. 
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